
Distributed PubSub
Non-Abstract Large System Design

...

● “Non-Abstract Large System Design”

● Alternatively: SRE Classroom

● Large (“planet scale”) system design questions

● Hands-on workshops and exercises

● Non-abstract component:

○ Crunch numbers

○ Provision the system

● Resilient software systems

● Distributed architecture patterns

NALSD

● Introduction and problem statement

● “Let’s do it together”

● Breakout session 1: Design for single datacenter

● Single datacenter sample solution

● Breakout session 2: Design for multiple datacenters

● Multiple datacenters sample solution

● Breakout session 3: Provision the system

● Provision the system sample solution

● Wrap-up and conclusions

Agenda

Introduction

● Publish-Subscribe (PubSub)

● Asynchronous communication

through message-passing

Introduction: PubSub

● Publishers: “producers” or “writers”

○ Senders of messages

○ Sends ordered messages

○ Messages grouped by topic

Introduction: PubSub

● Subscribers: “consumers” or “readers”

○ Subscribes to topics

○ Receives messages only

for subscribed topics

Introduction: PubSub

● Publishers do not directly communicate with Subscribers

● Subscribers do not directly communicate with Publishers

● Scale publishers/subscribers

independently

Introduction: PubSub

Introduction: PubSub

Publisher A

Message F1

Topic Foo

Message B1

Topic Bar

 Subscriber X Subscriber Y

Introduction: PubSub

Publisher A

Message F1

Topic Foo

Message B1

Topic Bar

 Subscriber X Subscriber Y

Introduction: PubSub

Publisher A

Message F1

Topic Foo

Message B1

Topic Bar

 Subscriber X Subscriber Y

Problem Statement
Let’s identify the problem at hand

“
Design a PubSub service that

clients all over the world can use
to read and write messages.

Gather Requirements
Let’s identify what we know and what we need

Requirements

Correctness

Availability

Latency

What we have:

● Three datacenters (DCs):

○ New York

○ Seattle

○ Kansas City

● Reliable storage system

○ Distributed!

● Reliable network

● Authentication &

Authorization

Background

What we need:

● A way to publish messages

○ Ordered

○ Grouped by topic

● A way to receive messages

○ Ordered

○ Grouped by topic

● Message persistence

Requirements

Publisher A

Message F1

Topic Foo

Message B1

Topic Bar

Subscriber X Subscriber Y

● Each DC runs the PubSub service we are designing

● Clients all over the world read and write messages

● Large volume of messages per day

● Uneven distribution of traffic over time

Requirements

 Seattle

New York

Kansas City

● Communicate ordered messages, grouped by topic

● Readers/writers can connect to any DC

● Users expect the same level of service from all DCs

● If a DC goes down, the user will automatically get connected

to another one (this is already provided as a service)

● Once a DC recovers, it goes back to full service

Requirements - What Does PubSub Do?

● Topics are identified by their topic_id.

● Readers are identified by their consumer_id.

● Readers will explicitly subscribe to topics.

● Subscribe(topic_id, consumer_id):

Subscribes the given consumer to the given topic.

Requirements - PubSub API

Subscriber X

Topic Foo Topic Bar

● Push(topic_id, message):

Append the message to the given topic.

Requirements - PubSub API

Publisher A

Message F1

Topic Foo

Message B1

Topic Bar

● Pop(topic_id, consumer_id):

Read the next message (in order) for the given topic.

Requirements - PubSub API

Message F1

Topic Foo

Message B1

Topic Bar

Subscriber X

Requirements - PubSub API
time

Publisher Topic Foo

Publisher Topic Foo

Subscriber Topic Foo

push

subscribe

push

Subscriber Topic Foo
pop

Message F2

Publisher Topic Foo
push

Subscriber Topic Foo
pop

Message F3

Message F1

Message F2

Message F3

● List():

Returns a list of all available topics.

● Not in scope for this exercise.

Requirements - PubSub API

Topic Bar

Topic Foo

Subscriber X

...

Service Level Terminology
● SLI: service level indicator

A quantifiable (numeric) measure of service reliability.

● SLO: service level objective

A reliability target for an SLI.

● SLA: service level agreement

SLO + consequences when SLO is violated

Availability

● PubSub must continue working under peak load even if one

datacenter goes down

Latency

● 99% of API calls must complete within 500ms

● 99% of pushed messages must be available for pop anywhere

in the world within 1s

Requirements - SLO

Correctness

● At-Least-Once delivery

● 100 day message retention

● System can lose 0.01% of enqueued message per year

Further details, including volumes of data, are in the

workbook handouts.

Requirements - SLO

Let’s do it together: push()

● Global PubSub Service

● Three datacenters (DCs):

○ New York

○ Seattle

○ Kansas City

● Clients all over the world write (push) and read (pop)

● Large volume of messages per day

● Uneven distribution of traffic over time

Requirements Recap

push()

Let’s design the API call that receives
messages.

Pushing a message

push()

Message

Start by storing the messages...

push()

Message

MessageStore

Message ID Service

push()

Message

MessageStore

Assign message IDs for storage...

More on the Message ID Service
● Assign unique IDs for message within a topic

● Assign ordered message IDs for simple ordered lookup

Message

Message ID Service

Message

Message

Message

Message Message

Batch Operations
● Address bandwidth or throughput bottlenecks

● May be supported alongside singular operations

● Basically: stuff multiple requests into a single RPC

Request

RPC Service

Request

Request

Request

Request Request

Request

RPC Service

Request

Request

Request

Request Request

More on the Message ID Service
● Assign unique IDs for message within a topic

● Assign ordered message IDs for simple ordered lookup

● Performance optimizations: batch operations

Message

Message ID Service

Message

Message

Message

Message Message

Message

Message ID Service

Message

Message

Message

Message Message

MessageStore

More on the MessageStore

Key: Topic ID, Message ID
Value: Message Content

Topic 1 Message 1 … Message Content ...Topic 1 Message 1 … Message Content ...Topic 1 Message 1 … Message Content ...

More on the MessageStore

black-box distributed file system

● Distributed file system

○ Storage abstractions

○ write(), read(), implemented already

○ Supports configurable replication strategy

MessageStore

Message Store Sharding
● Need to retain 100 days worth of messages

● 100 days * … = 25TB of data → too big for one machine :(

● Address storage size bottlenecks

● Basically: split your data into multiple buckets, and store those

buckets separately, possibly multiple copies of each bucket

● Sharding mechanism should be flexible

● Consistency and fault tolerance

● A single disk failure should not cause data loss

● Consider replicating shards locally (local reads are cheapest)

Sharding

unsharded sharded sharded + replicated locally

A, B,
C, D A BC D

A

B

D

D

B

A

C

D

B

C

B

C

Message Store Sharding
● Need to retain 100 days worth of messages

● 100 days * … = 25TB of data → too big for one machine :(

● Sharding to the rescue!

● Keep multiple copies (replicas) of each shard:

○ Greater resilience

○ … and performance too (local reads are cheap)!

Flow overview: push()
1. Get message ID from Message ID Service

2. Write message to MessageStore

3. Ack receipt of message

MessageStore
Message ID

Service

push()

Message

● Designs will be different, with different abstractions: that’s okay!

● Focus on the process of designing something end-to-end

● Think about high level concepts, rather than nitty details

● Think about trade-offs of different design decisions

● Make assumptions explicit

● Call out risks

● Simplify the problem

● If working in a group, discuss ideas and use each other as

resources!

Reminder: don’t sweat it!

● Assume good intent

● Respect each other

● Speak up and share information

● Let everybody speak

● Ask questions

Most importantly, have fun!

Rules of engagement

Breakout Session 1:
Single Datacenter (40 minutes)

Goal:
Design a working system that fits
in a single datacenter.

Break: 5 Minutes

Reading a message

pop()

Consumer

Reading a message

pop()

Consumer

MessageStore

Reading: getting the “next” message

pop()

Consumer

MessageStore
Subscription

Position Service

Next, read the messages on demand...

pop()

Consumer

MessageStore
Subscription

Position ServiceMessage ID Service

Message ID Service

push()

Message

MessageStore

Reminder of how push() works...

push()

Error Handling: pop()
● Message IDs are consecutive… almost.

● Gaps can arise if push() service crashes after allocating ID, but

before message is successfully written to storage.

MessageStore
Message ID

Service

Message

☠

✔ ✘

Error Handling: pop()
● Detect error upon read

● Increment ID and keep reading until the next message is found

● Do not read past the end of the topic

● Some latency impact; expect to be rare

● Performance optimizations:

○ Batch reads

○ Readahead cache

○ Bloom filter on storage service

Flow Overview: pop()
1. Get latest written message ID

from Message ID Service

2. Get latest read message ID from

Subscription Position Service

3. Increment the read message ID

4. If at the end of topic, return

5. Read message from storage

6. Return the message to consumer

7. Update subscription position for

consumer and topic

MessageStore
Message ID

Service

pop()

Consumer

Subscription
Position
Service

Breakout Session 2:
Multiple Datacenters (30 minutes)

Goal:
Extend the design to work correctly
in multiple datacenters.

Break: 5 Minutes

Single Datacenter Design

MessageStore

Message ID
Service

push()

Message

pop()

Consumer

Subscription
Position
Service

One for each datacenter…?

Seattle Kansas City New York

MessageStore

Message ID
Service

push()

Message

pop()

Consumer

Subscription
Position
Service

MessageStore

Message ID
Service

push()

Message

pop()

Consumer

Subscription
Position
Service

MessageStore

Message ID
Service

push()

Message

pop()

Consumer

Subscription
Position
Service

Partitioned MessageStore

MessageStore

Message ID
Service

push() pop()

Subscription
Position
Service

Seattle New York

MessageStore

Message ID
Service

push()

Topic1, Msg X

pop()

Subscription
Position
Service

UserX, Topic1

MessageStore Replication
● Pushes can arrive at any datacenter

● Need to be able to pop messages from any datacenter, even at

a different datacenter than where it arrived

● Need to replicate messages to every datacenter

● Factors to consider:

○ Consistency

○ Fault tolerance

○ Availability

Replication: synchronous

Seattle Kansas City New York

MessageStore MessageStore MessageStore

Message

push()

Replication: asynchronous

Seattle Kansas City New York

MessageStore MessageStore MessageStore

Message

push()

Replication: hybrid

Seattle Kansas City New York

MessageStore MessageStore MessageStore

Message

push()

MessageStore Replication: Tradeoffs

Push Latency Pop Latency Data
Durability

Synchronous
Replication

High Low High

Asynchronous
Replication

Low High Low

Hybrid
Replication

Medium Medium Medium

● Asynchronous writes: ~10ms response time

● Can we afford the data loss?

● Reminder:

○ Can lose 0.01% of pushed messages per year

○ 99% of messages must be available for pop from any

location in 1 second or less

5,000 topics * 10,000 msg / day / topic = 50M msg / day

→ Can lose 5k messages per day.

MessageStore Replication

90k sec/day * 1 msg/sec/thread

= 90k msg / day / thread

parallelize processing to handle

the entire load...

(50M msg / day) /

(90k msg / thread) =

~600 threads / day

(i.e. concurrent loads / day)

Async Replication
Reminders:

● 50M msg / day

● 99% of messages must be

available for pop from any

location in 1 second or less

● ~90k seconds / day

● Assume 1 second replication

delay

● Each machine failure =

lose all in-flight messages =

lose ~600 messages

● Machine would have to fail ~8

times / day for us to lose 5k

messages (0.01% of

incoming messages)

We can afford it!

Async Replication
Reminders:

● Can lose 5k msg / day

● ~600 in-flight msg / sec

Let’s use replication...

MessageStore

Message ID
Service

push()

Message

pop()

Consumer

Subscription
Position
Service

Kansas City

Message ID
Service

push()

Message

pop()

Consumer

Subscription
Position
Service

Seattle

MessageStore

Message ID
Service

push()

Message

pop()

Consumer

Subscription
Position
Service

New York

MessageStore

File Replication

Message ID Conflicts

MessageStore

Message ID
Service

push()

Topic1, Msg Y

pop()

Subscription
Position
Service

Seattle New York

MessageStore

Message ID
Service

push()

Topic1, Msg X

pop()

Subscription
Position
Service

Message ID
Service

Message ID
Service

Message ID
Service

Let’s use consensus...

MessageStore

push()

Message

pop()

Consumer

Subscription
Position
Service

Kansas City

Paxos-based consensus

push()

Message

pop()

Consumer

Subscription
Position
Service

Seattle

MessageStore

push()

Message

pop()

Consumer

Subscription
Position
Service

New York

MessageStore

Distributed Consensus
● Distributed components reliably and consistently:

○ Agree on a single source of truth

○ Identify leaders for specific operations

○ Divide pieces of work

○ Make other decisions

● Unreliable components → reliable decisions

● Consistent to decisions, even when sub-components fail

● Recover orphaned datacenters

● Eventual at-most-once semantics

● Paxos, FastPaxos, Raft

Message ID
Service

Message ID
Service

Message ID
Service

Let’s use consensus...

MessageStore

push()

Message

pop()

Consumer

Subscription
Position
Service

Kansas City

Paxos-based consensus

push()

Message

pop()

Consumer

Subscription
Position
Service

Seattle

MessageStore

push()

Message

pop()

Consumer

Subscription
Position
Service

New York

MessageStore

Message ID
Service

Message ID
Service

Message ID
Service

Partitioned/Stale Subscription Positions

MessageStore

Message ID
Service

push()

UserX, Topic1

pop()

Subscription
Position
Service

Seattle New York

MessageStore

Message ID
Service

push()

UserX, Topic1

pop()

Subscription
Position
Service

Message ID
Service

Message ID
Service

Message ID
Service

Let’s use consensus...

MessageStore

push()

Message

pop()

Consumer

Subscription
Position
Service

Kansas City

Paxos-based consensus

push()

Message

pop()

Consumer

Subscription
Position
Service

Seattle

MessageStore

push()

Message

pop()

Consumer

Subscription
Position
Service

New York

MessageStore

Message ID
Service

Message ID
Service

Message ID
Service

Subscription
Position
Service

Subscription
Position
Service

Subscription
Position
Service

Replicating/Sharding Services

MessageStore

Message ID
Service

push()

Message

pop()

Consumer

Subscription
Position Service

Breakout Session 3:
Provision the System (35 minutes)

Goal:
Identify how many machines you
need. Determine if SLOs are viable.

Break: 5 Minutes

● Provisioning is an art.

● Simplify where possible

● Over-provision by default

● Granularity: units of one machine

Provisioning

single
machine
capacity

provision 3 machines

negligible, ignore

system needs

Storage
Message content:

50M msg / day * 5 kB / msg

= 250 GB / day

IDs:

50M msg / day * 128 bits / msg

= 800 MB / day

Total: ~250 GB / day

Key: Topic ID, Message ID
Value: Message Content

MessageStore

Topic ID = 64 bits

Msg ID = 64 bits

Average msg size = 5 kB

Machine:
128GB RAM, 2TB SSD
1 x 4TB HDD

Storage
100 days retention:

250 GB / day * 100 days

= 25 TB / 100 days

⌈25 TB / (4 TB HDD / machine)⌉
= 7 machines

… per DC

… per copy

Key: Topic ID, Message ID
Value: Message Content

MessageStore

Topic ID = 64 bits

Msg ID = 64 bits

Average msg size = 5 kB

Machine:
128GB RAM, 2TB SSD
1 x 4TB HDD

Storage
100 days retention:

7 machines / DC / copy

7 machines / DC / copy

* 2 copies / DC

* 3 DCs

= 42 machines

Key: Topic ID, Message ID
Value: Message Content

MessageStore

Topic ID = 64 bits

Msg ID = 64 bits

Average msg size = 5 kB

Machine:
128GB RAM, 2TB SSD
1 x 4TB HDD

Which hardware to choose?

latency per-machine machine count

RAM 0.01ms 128GB 1176

SSD 1ms 2TB 78

HDD 15ms 4TB 42

MessageStore

Bandwidth: push
● Peak load = 1.25x avg load

= 250 GB / day * 1.25

= ~315 GB / day

● 315 GB / day

= ~4 MB / s

= ~30 Mbps inbound

● Outbound ~= Inbound

30 Mbps inbound,

30 Mbps outbound

~250 GB / day

Machine:
10Gbps ethernet
100Gbps cross-DC

MessageStore
Message ID

Service

push()

Message

Bandwidth: pop
● Avg load

= 10k consumers *

 5 topics / consumer *

 10k msg / topic / day *

 5 kB / msg

= 2.5 TB / day
?? / day

Machine:
10Gbps ethernet
100Gbps cross-DC

MessageStore

Message ID
Service

pop()

Consumer

Subscription
Position Service

Bandwidth: pop
● Peak load = 1.25x avg load

= 2.5 TB / day * 1.25

= ~3.15 TB / day

● 3.15 TB / day

= ~37 MB / s

= ~300 Mbps outbound

● Internal ~= Outbound

300 Mbps outbound,

300 Mbps internal

~2.5 TB / day

Machine:
10Gbps ethernet
100Gbps cross-DC

MessageStore

Message ID
Service

pop()

Consumer

Subscription
Position Service

Message ID
Service

Message ID
Service

Message ID
Service

Is it reliable enough?

MessageStore

push()

Message

pop()

Consumer

Subscription
Position
Service

Kansas City

Paxos-based consensus

push()

Message

pop()

Consumer

Subscription
Position
Service

Seattle

MessageStore

push()

Message

pop()

Consumer

Subscription
Position
Service

New York

MessageStore

Message ID
Service

Message ID
Service

Message ID
Service

Subscription
Position
Service

Subscription
Position
Service

Subscription
Position
Service

Availability

Partition

Tolerance
(Latency)

CAP Theorem

Consistency
(Correctness)

Latency: push
● Determine ID: ~200ms

● Store message: ~150ms

○ Synchronous

○ Bound by slowest

connection to remote

datacenter

● Write message: ~10ms

Total = 200ms + 150ms + 10ms

 = 360ms

Reminders:

● 99% ops complete in <500ms

● Paxos takes ~200ms

● Inter-continental = ~150ms

● Local write takes ~10ms

MessageStore
Message ID

Service

push()

Message

Latency: pop
● Determine ID: ~0.5ms local,

~150ms remote

● Read message: ~15ms local,

~150ms remote

● Deliver message: ~negligible

● Update position: ~200ms

Total = 150ms + 150ms + 200ms

 = 500ms

Reminders:

● 99% ops complete in <500ms

● Paxos takes ~200ms

● Inter-continental = ~150ms

● Disk seek+read takes ~15ms

MessageStore

Message ID
Service

pop()

Consumer

Subscription
Position
Service

Bill of Materials
Final count of machines:

2 push +

2 pop +

3 Message ID Service +

3 Subscription Position Service +

14 MessageStore

= 24 per DC * 3 DCs * 1.25 (for load spikes)

= 90 machines

Last thoughts
● Start simple and iterate

● See the big picture

● Details, details, details!

● But also, be reasonably pragmatic

● Flexible vs. premature future-proofing

● Cultivate discipline in problem solving approach

● Make data-driven decisions

Take breaks and enjoy the process!

Distributed PubSub
Non-Abstract Large System Design

...

